
Due to its wide range of applications, numerous technologies exist for contact manufacture in the area of electrical connections. These technologies are ultimately intended to optimise important parameters such as electrical resistance or mechanical stress ability for the respective application. For this purpose, metallic base materials with one or several metallic coatings are normally used as contact materials. The thickness of these coatings is important for contact characterisation. Coating thickness measurement is therefore essential for the process and for quality control in the production of electrical contacts.
Table 1 shows several examples of frequently used base materials and coatings for electrical connections. The possible combinations result in numerous coating systems, including multiple coatings, which require measurement. For correct determination of the coating thickness by X-ray fluorescence analysis, the coating structure and base material must be known. This generally involves numerous measurements. The management and calibration sometimes required for these measurements is time-consuming and quickly leads to confusing and error-prone structures. The number of necessary measurements can now be reduced considerably with WinFTMยฎ Version 6 evaluation software.
The IOBC method (Independent of Base Composition) simplifies the procedure. With this method, the coating thickness can be measured correctly regardless of the base material composition. The simplification of the procedure increases the accuracy of measurement. A changed base material is correctly taken into account automatically by the software.
These options offered by WinFTMยฎ V 6 are best illustrated on the basis of specific examples. The first example is the Au/Ni/Base system. Various Cu alloys and Fe alloys are used as base materials. For classic evaluation, the software for every Au/Ni contact of the respective base material to be measured must be known (measured). By measuring with the IOBC method, all contacts can now be measured in one operation. The comparison of a coating system (films of a known thickness) on CuSn6 and CuZn36 shows that the base material has virtually no influence on the measured coating thickness. In addition, the results obtained standard less are highly satisfactory in terms of the accuracy and repeatability of the Au and Ni coatings. Even when measuring standard free.
These options offered by WinFTMยฎ V 6 are best illustrated on the basis of specific examples. The first example is the Au/Ni/Base system. Various Cu alloys and Fe alloys are used as base materials. For classic evaluation, the software for every Au/Ni contact of the respective base material to be measured must be known (measured). By measuring with the IOBC method, all contacts can now be measured in one operation. The comparison of a coating system (films of a known thickness) on CuSn6 and CuZn36 shows that the base material has virtually no influence on the measured coating thickness. In addition, the results obtained standard less are highly satisfactory in terms of the accuracy and repeatability of the Au and Ni coatings. Even when measuring standard free.
Conclusion
The numerous measurements required for contact systems due to the large number of employed coating systems and base materials can be reduced substantially with WinFTMยฎ V6 software. This greatly reduces time and effort and minimises the potential risk of errors.
For more information contact Helmut Fischer today!